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Phase Compensated Fine Scale Thermal Blooming

z John J. Barnard o
Lawrence Livermore National Laboratory, University of California
P.O. Box 808, L626, Livermore, California 94550

N Abst,ract

We derive the growth rates for the fine scale thermal blooming instability in a phase
compensated, high power laser beam. This work extends the work of previous anthors to
include the effects of single short laser Pulse_:s and the effects of windshear. o

L INTRODUCTION

 The fine-scale ‘thermal-bloonting “instability has “been investigated computationally
(Refs. 1,2, and 3) and analytically (Refs. 4 - 11, 15). The computational work resulted
in the discovery of the instability and continues to provide the most accurate description
of a real beam propagating through a real atmosphere. The analytical results, however,
provide a way of understanding the physics of this instability under simplified assumptions,
allowing some physical insight into the instability that can be more difficult to glean
from the numerical results alone. ‘This note analytically treats the phase compensated
instability (and thus augments previous work by the author in ref. 9, which dealt with an
uncompensated beam), but includes the effects of short pulse times and wind shear (and
thus generalizes somewhat the work of reference 4). Asin reference 9, the main purpose of
this work will be to obtain the scaling laws for the growth rate, as a function of pulse time
and perturbation wavelength. As I will be relying heavily on references 4 and 9, equations

from those references will be referred to.as, for example, 4-3 denoting equation (3) from
.reference 4. ' : A

"I GENERALIZED PROPAGATION EQUATIONS

As in reference 4, we let T; and 51 be the intensity and phase perturbation upon
a uniform beam of intensity I,, and phase S,. The index of refraction perturbation is
denoted n;, and the intensity and phase perturbation of the “beacon” as described in
reference 4, will be dencted I g and S) g, whereas the unperturbed beacon intensity are.
given by I,p end S,p. Finally the normalized beacon intensity perturbation is defined as
Yg =Ig/I,pg. The intensity and phase equations (eqs. 4-10,4-11, 4-48, and 4-49) for both
the beacon and beam are Fourier transformed in z and y, extracting the fourier component
with perturbation wave number k 1 - The resulting equations are Laplace transformed in

time, with hats indicating the transformed variables. Upon elimination of the beam and
beacon phase, equations 9-23 and 4-52 are obtained:
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We assume (as in references [4] and [9]), that the index of refraction is only a function

of density. Thus, : . RN : : :

S . dn_ S

n = &?Pl- ' (3)
The density perturbations arise from the absorption of beam energy, and conversion

into thermal energy. This is described by the fluid equations legs (9-1) to (9-3)]. As

in equation (9-34) we may express the index of refraction perturbations as a function of
intensity perturbation, and the state of the atmosphere at # =0: '

fr=—<fh +g | @

. - .Here f = 9T(M™ )14 and g. = Po(dn{dp)MTC . “where M is defined in equation
(9-30), and C; is defined in. equation (9-31) and T is defined following (9-35). (Note that
in ref. 9, M has been Laplace transformed in ¢ and z; here we do not transform in z). In
the limit. of large ¢ analyzed in reference (4) (in which thermal diffusion was ignored):

"f'_'sl"'ii“_-;'z. | T

n;(t:-ﬂ;,z) L . S
“eti#ie
3 Z_J_ ru . o . .
In reference 4, f was considered constant with respect to z and ¢ was assumed to be

proportional to §(z — k) where h is the height of a uniform atmosphere. Wind shear may
be included by allowing k, -v to be a fumction of z, and so both f and g will be functions

- of z.

‘A general evaluation of (M), yields:

Fo— ‘Te2k? I 7
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Here the notation is as in ref. 9: ¢, 1s the sound speed, s, = 8+1k, -p, v is the ratio of
specific heats, y is the diffusion coefficient, v and @ are viscosity coefficients defined after
eq. 9-27. In general g is a function of velocity, density and temperature perturbations, all
of which can be functions of z. If pulse times are short (i.e. if c,k1 < |s,]) and if diffusion _
and viscosity can be ignored equation (7) is approximately given by: L

f=Tck? /58 | | - (8)

As discussed in ref. 9, following eq. 9.62, s, may be regarded as constant with respect
to z when ¢, k1 < |s,]. - - '
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- Substituting eq. '(4)ﬂint6 equations (1) and (2) yiélds: |

'azfl )

fk3I Lkg
Oz2 + (41.2 n, 5= o (9) :
s K. —B3f. kg
BeZ +4L2 = e I + o (10)

As in reference (4) equatlon (9) is solved generally, with arbitrary [;(z = 0) and

-ﬂz—_ﬂl This general solution is substituted into equatlon (10), with the boundary con-
cht:on on ¢¥p at z = h that; . . : .

1,53(2::]1):_.0 a.n‘d_:_.w:& e _f:j(n)

"The bea,con intensity is then expressable in terms of the beam;ntensxty "zmd phzsem: z= 0
. The feedback: conchtlon for phase compensation, '

a¢(z=0)_1af(z=_-o) o
L e . ®

The form of of eq. 9 suggests that we deﬁne_ k. by:

fk2 1, |
k:=k%+ —n-LD— (13)
. Here ky = k3 /2k. |
If k, is constant with respcct to z the general solution to eq. (9) is:

: Ji(z)--ll(z—— 0)cos k,z—i— k lI

S;(z— U)sm]s,z-l-'

j dz g(z Jeimkafe— ) (14)
Here 5'1(:«: = 0) = (Ik%)~ (ﬂdf—“ﬂl)

k. is not a constant, but varies slowly enough such that dk :/dz < k2, the WKB
approximation (see e.g. ref. 12) may be used to solve eq. (9). The WKB generalization of

eq. (14) is:
: . k 1/2 a z
() = (km) [I](z-—{))cos-/ dz'k,(2')
k21, . Lo z
+( —T k;" (z = 0)) sin/ dz'kz(z')]—f-
zo : 0
Ik?

kzo
i | (i) s e o

"Here k,, = k:(z=0) and k!, = dk./dz at z=0,
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Although a more general feedback cond;t:on than eq. (12) may be used we restnct
our attention to strict phase compensation, so we assume that Ii(z=0)=0. The general
solutmn to equation (10) subJect to the boundary condltlons in eq. (11) is:

1,63— ./dzm(z)smkf(z -z) _ o (16)

where

I (Z) 4 =L T K‘..Lg(z)

o ..

m(z)

Substltutmg eq. (14) mto eq (186) ylelds

'.zB Lil(k_z:i)[smk_,z——m Izcaslf(h— z)-!——cosk hsmk;hmnk_f(h—z)]

.2 h
—-'—L-—/ d2'g(z')sinky(z' — 2) — ;*Iof / dz' smkf(z —-z)/ dz"g(z")smk,(z —~z")
nakf 2 ' k k

(17)
If eq. (15) is substituted into eq. (16) instead, we obtain the WKB generalization of eq.

(17):
by = oL "y o m
¥e = n kfkmsl(z—o)/ dz'f(z') sin k¢(2' —z)smf dz"k.(2")+

| n. Lf/ dzg(z)smlf(z —z)

n2kfk ] dzf(z)smkf(z —z)/ (_k_(_lf;m)lﬂg(e)sm/e ’az"'kz(z") ”

Imposmg the feedback COILdltan eq (12), we obtain ] o

where

A .
n(s) = -1—/ dz'g(z") cos k'
Ny i}

[ e cosin [ g, \#o e
_ﬂﬁkm./o dz' f(z") cos kyz /ﬂ.. d{(m) g(f)sm'/e dz"k,(2") - (20)
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~ obtain the result 4-64:

and o
k2I, h d
d(s) =1 -;l-kL/ d2'f(2") cos k-fz'sinf dz"ky(z") (21)
ozo0 Jg 0

Substituting eq. (19) into eq. (15), and evaluating at z = h, where k is the ?fﬂpagation .
path length yields: - S , . B .

R PP B —Gn(s) . [* ;’ . ,.
- Alhe)= d(sJ)'[[k,.,kz(h)]W sin [ dekuteyt

o d(s) rho. e ke . ‘".
B s o nf e ] o

The Laplace inversion of eq. (22) is:
DLk, t)=—— / 1, (h, s) exp(st)ds. @3
“2m1 C—ica _ : .

Equation 23 may be evaluated by the method of residues. Thus eq. (23) is solved by
sobving the equation T TR L RERES A
e d(s) = 0. R (28
The solution to equation (23) will asymptotically satisfy Iy(h,t) ~ exp st where s is the
solution to equation (24) with the largest positive real part. - ' :

III. CONSTANT k,

For the case that f and thus k, are constant with respéct:_to' z we (not surprisingly)

cosk,hcosk,.h+z—f'smk,hsipk,h—gb T (=)

~-As found in-ref. (4)3f |k| << |k equation (25) becomes .

coskh=20 = ("fi_lfe) _h = (2n + 1)'2' _ o (26)

In the large time limit (ie. |s.| < c,ky) we approximate eq. (7) and recover the
result of ref. 4 (cf. eq. 4-62; here diffusion has been included, as well): '

4I“ngih2t 9 8 e 2 ' o _
Sot = 72(2n + 1)*n, —xkit= T%(2n + 1)? ND'? TERT (c'AJ’.» ‘Sa|) (27)

Here Np =Tl kht/n,, x = (h/2k) 2k, r = (2k/h)/2c,t, and T = (2k/R) 2y /e,
In the small time limit, eq. (8) may be combined with eq. (26) to give: :

4TT,c2kd h243\1/2 8 2\ |
= (aerm) < (Eme)” enen o
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In the limit that diffraction becomes important, then |ks| & |k,| and equation (25)
becomes: .

. . fERLR ™
k:—kj)h= =2 v (9 1)— .
cos( HR=0 = Do, = (2n+1)3 | (29)
Thus in the limits of short and long time the: quantity s,f can be written:
al L kht _ _ 2N .
5.t o { n(2n+i) = 1r(2n-?—1) _ CakL 2> |3, (30)
o8 = Y (2PLkhck2 311/3 ANpK3,3\1/30
m(2n4+1)n, ) — (~1r(2n+;)) CJL-L < |‘Sa|

Thus, as in the uncompensated case, the phase compensated instability gain is reduced
when the sound travel time across a perturbation is large compared to the growth time.

IV. WIND SHEAR (VARIABLE k:) _

-0 o~ Inorder to-treat the case of-a wind whichiis-non-uniform in =z we Teturn to eq. (21)
and make the ‘assumption: that: '

C B uE)=koou ko'

Again we sblit the problem into the two regimes when diffraction is and is not important.
Equation (13) can be approximated in the two regimes:

kf+'“n(5n'i{'.k.l.-'”'z) o > : ) .
’ 2
ke if k2 eS| o (3)

. no(.!g-l-ka_l}'
TrI, k? 1/2 S
—

(ﬂa(lg+ik4_vfz)).i . . <

. Here and subsequently s, = s+ ik L *L= a constant with respect to z. Using the upper of
eq. (31), we may approximate eqns.. (21) and {24) in the small k; (negligible diffraction)
.. .Jimit by: _ ' - '

TLE] [*_ da' . aCLM/2
1 nokxn./o .s,,-l-_z'k_;_'v'z"m. PRYE (80 + ik v z)H2 gl =0 (32)

We may introduce two variables with the dimensions of frequency:
sp=TLkh/n, and s,=ik v'h

Also the following dimensionless variables are of use,

(—I‘Ios,,)”z (SsosDkfh)”z_ , ,(rr,,hh) (Zspk,h)
a=2 7 =T ) i b= /)= .
nov's. \ 8% nyv /

Sw
and "
ay = a(l + ;_2)1/2 = ﬂ(l + i‘ﬁ)llz.

Sa

. _.6_
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We may then transform eq. (32) to:

: a;—a . _
o 0=1- a/ dzx i T (33)
. o _ .

T+a
The integration may be expressed in terms of the cosine- and sine-integrals ( cf. e.g. ref.
13):
0=1-—a(cos a[s:(al}— si(a)] — sinalci(a;) — c1(a)]) (34)
Here

si(:z:):—f dmsma: and c1(:r)-—f dzco:::c. . -~ (35)

If |a| and |a1| are much greater than umty asymptotic expressions for si(z) and ci(z) may

siz) - —coz d ci(z) = sinz (=3 1). (38
Subst:tutmg eq (36) mto eq (34) ylelds |
cos(al—a)—_-—-_-ﬁ = a—a= (211-[—1)% : | (37

Solvmg eq. (37) for s,, ylelds

APLE R (2n+1)27r nov i’k ik e
(2n+1)21r2n,, : 64I"I 2 : ( .')

]

The assumpt:on that |a| and |a, | be much greater than unity, can be shown to be approx-

- imately equivalent to assuming that either |s,,] < s p(ksh)? orthat n 3> 1. It is apparent

~ .Trom eq. (38) that small amounts of wind shear w1ll lower the growth rate and will be
.~ most noticeable at small values of k.

In the Jarge k, limit, when the lower of egs. (31) is substituted into eq.  (21), we

_.obtain: _ _ - L

2spksh

=] - k . ) ‘w
0=1 Sohsh+sp j(; s %*:-:x:) cos _rhz sin(kshz + 5. In(1 + ” z)) (39)

Here the integration variable z = z/h.
Expanding the sin in eq. (39) and evaluating part of the integral:
Sbkfh 8o
—=Drjn 1—
sok‘_fh-l-SD L‘D( - cos( l_n(l-{- )))

_}./ At =2 + sm(2l;h:c +—1n(.'1 -|- ))] o (40)

-7-
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The final integral is of order (k sh)~! whereas the remaining terms in the large brackets
are of order unity., Thus in the large & sh limit eq. (40)becomes:

Sp Sy Sw
= cos(22 Zw o2 . 4
cos(sw Il + 8¢ ) = ° exp((2n + 1)Fau) —1 ( 1_)

Separating the real and imaginary parts'of eq. (41) yields:

8o t 1] snz, ; - T | 8w
ot o |_SDTa 2= 2wl 2
8w 2+2[1—cosmn] En (2n+1)2 sp (42)
When z, « 1 2
_ 2 TLkk (2n+Drk3v2hn, ik v'h . (43)
ST Gntr ., 24 TLk 2 r

In order to perform the integration in-eq. (23)-some care must be taken when summing
the residues at the poles in eqs. (41) and (42). The integral in equation (23) can be written:

,I(h t) = _1_ Crhics F(so)e'ds,
VT 9y C—ioo cos(%flﬂ(l'i‘%’f))

(44)

Here F(s,) depends on g¢(z,s,) which in turn depends on the initial index perturbation
n1(t = 0;z)(cf. eqs. [20] through [22]). Physical distributions should not result in poles
in F'(s,) with positive real s,. In order to keep the logarithm in eq. (43) single valued a
branch cut is required with endpoints on the singularities in the logarithm at s, = 0 and
8o = —~i|sy| (see figure [1]). We choose the branch cut which connects the two singularities,
- -and choose the branch of the logarithm such that: S R -

_;-WSaIg(l-fi-—':E)Sw (45)

. The poles in eq. (41) or (42) all occur somewhere along the line Im(s,) = —|s5,|/2. However
not all integers n correspond to solutions on this branch of the logarithm. Eq. (45) and
(41) imply that n must satisfy: o -

~ s 8p
2n+1)=| < 7z 46
We thus obtain contributions to the integral in equation (44) from the poles satisfying
both egs. (46) and (42), and .a counter-clockwise integration around the branch cut.
Examination of the integrand in the branch cut integration, reveals a function which is
well behaved, though difficult to analytically integrate. Since Re(s,) — 0 in the branch
cut integration, the branch cut contributes a pazt of the solution which oscillates but does
not grow in time. The dominant growing mode is thus approximately given by eq. (43)
with n = 0, for sp/|sy| > 7, and with only oscillations present for $p/|sw| < m. Thus
- 8-
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wind shear lowers the growth rate at large values of k;. Physically eqs. (38) and (43)
can be interpreted as follows:. The growth times 75 in the large and small &£, regimes in
the absence of wind shear are: r¢ ~ 1/(spkysh) (for small k1) and g ~ 1/sp (for large
k1). The wind shearing time for the perturbation, 7, ~ 27 /(k v'h). So in the large k|
regime, the wind shearing time is shorter than the growth time above a critical k L, (where
TG ~ Tw)and in the small &, regime the wind shearing time is shorter than the growth
time below a critical k, (where again T ~ Tw). Equations (38) and (43) indicate that .
when 76 > 7, the perturbations do not grow. R . L

The previous discussion used a specific form for the wind shear, i.e. a wind having
a linear gradient in z. To what extent do the results depend on this form for the shear?
To answer that question, we may rewrite eq.(21) (for which only the WKB assumption
[ldk:/dz| << [k.|?] has been made): .~ = R o '

_d(s')ﬁjl j-‘._ kl ’ [) Hzflkf(z')'—é'_k‘;"'-] cos k fz's'in'k,(z'.);'. : | (47]

" Here _.1 - e

CRG=c[@k@ (g
Straightforward algebra leads to the following approximate forms for the dispersion relation
d(s)=0: o - e |

cos[(k.(h) — kp)h] AR = ke > |k — k|
0=d(s) = { 1— 3L [Fdz K2(2)sinFoz if [ki] > k; (49)
cos k. (h)h if [k2|> kg and |k.] = |k,

- ~Equations (41),(34), and (87) represent, respectively, the top, middle, and bottom of equa-
tions (49) for the case of a linear gradient in the wind, while equations (29) and (26) are
the respective Teduction of the top and bottom equations for the case of no-‘wind shear.

V. DISCUSSION AND CONCLUSION
Note that we have assumed that

k, o=k -y, +kiv'z =k, v, +k, - %z.

Since dy/dz is not necessarily aligned with Lo, We may write v' = |du/dz|cos ¢, where @ is
the angle between the shearing direction and the perturbation wavevector k,. As pointed
out in ref. (6) when ¢ = 7/2 the growth of the perturbation wavevector is not affected
by the shear, whereas when ¢ = 0 the shear is most able to mix different phases of the
perturbation at different altitudes, thus lowering the growth rate. o '

Figure 2 outlines the borders of the asymptotic regimes described by equations (27),
(28), (30), (38) and (43) in the k, —? plane, with the distortion number Np (or equivalently
the energy per pulse) held constant. The real part of the growth rate of the fastest growing
mode times the pulse time (i.e. the logarithm of the gain} is indicated in the region where

—g-_

a/8/1980



it is valid. A few contours of G, the logarithmic gain, are shown. Figure 3 is a surface
plot of G as a function of the same parameters. Here, G has been artificially smoothed by
inverting the sum of the inverse growth rates and summing the decay rates found in each
asymptotic region. In figures 2 and 3, ¢ = m/2. Figures 4 and S, are the corresponding
figures with ¢ = 0, and |dv/dz} = vo/h. Np = 1000 has been assumed in figures 2 through

The dotted lines in figures 2 and 4 indicate roughly where current technology limits
the application of the boundary condition (eq. 12). That is, we expect that the actuators
which control the phase front on a beam director of several meters, will not likely be
spaced closer than ~1 cm, while. actuator time response is not likely to be much faster
than ~ 103s~1, For perturbation wavelengths and pulse times less than these respective
cutoffs, growth will occur at a smaller rate but no less than the free beam growth rates of
ref. 9. (In ref. 3, it was found that non-linear coupling of the low-wavenumber instability,
- .produces. growth at high wavenumber beyond theactuator cutoff )-

" As can be seen from figures 2 through 5 single short pulses (At ~10~3 1o ~10~1s
for Np.=-1000) will have somewhat smaller Instability gains due to acoustic effects. Wind
shear has virtually no effect on short pulses (cf. ref. 9). At large times however wind shear
can substantially reduce the gain for ¢ < n /2. Figure 6 illustrates the gain‘for a 1 s pulse
as a function of |k, | and ¢ with Np = 150. (The ‘smoothed’ gain has again been used.)
It is apparent that there is a critical angle ¢ at which the logarithmic gain goes to zero.
By simultaneously solving for G = 0 and dG/dk; = 0 we obtain: B

':"'cosqﬁcg 1.3%_?. 3 o '. _ L (50)

We conclude that if Np > 1, B _ _ U
Np/Br << 1 (51)

is necessary for maintenance of a collimated beam. (This condition may not be sufficient,
however, if the small range in angle of unstable wavevectors is made up for by the large
amplitude of the growing mode at ¢ = 7/2. In a real atmosphere if |m/2 — é| is less
than the angular. dispersion of the wind directjon when averaged over a pulse time, we
expect that beam degradation will be minimal.) Atmospheric turbulence will also act
to stabilize the perturbations, again shearing the perturbations over large eddy lengths.
|du/dz| should then be replaced by vi(€)/£ in eq. (51) where v, is the turbulent velocity
associated with the largest scale £ of the turbulence, {Note that the quantity S used in
ref. 3 to characterize their numerical results is defined as .§ = (Av/v,(Np/N,), where
Av = h dv/dz, Ny = (Np/2)(D/vet), N = kD?/(4h), and D w the dimeter of 1
- laser beam. Thus Np/fr = n/[2'/2S].) o s

-10-
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Thus, the need to compensate for the inhomogeneous and fluctuating index of re-
fraction in the atmosphere has resulted in the idea of phase compensation of a trans-
- atmospheric laser beam. However, the realization that at high power these beams will
have the property that fine scale thermal inhomogeneities rapidly grow and degrade the
beam, has motivated the conception of more sophisticated compensation schemes such as
conjugate laser heating (ref. 14) or field (intlensity and ‘phase) conjugation (e.g. refs. 3,
15). If phase conjugation alone is used eq. 51 indicates that wind shear allows for some-
what less stringent limits than without shear.” For example, a modest shear of 450 cm
s~ (10 mph) over 5 km (4 = .015), with a laser wavelength of 1y, and a pulse length
of 1 s (r 2 1.5 x 10*) requires the distortion number to be less than ~200. Foral0m
beam director, and an atmospheric absorption coefficient of 10~ km™! '(cdrréspondjng to
I'=7.9x1071%m?J~! ), the total fluence would be less than 6 x 10° J. This is really an
upperlimit on the fluence, since here the inequality in eq, (51) has been taken to be an
. equality _ O b T
. Finally let me emphasize some of the ‘uncertainties of the present work. The growth
.Tates given in equations .(27), (30), (38), and (43) Tepresent our best estimate of the
perturbation growth rates in the simple model based on a uniform atmosphere. The
approximations were based partly on physical grounds and are therefore not rigorous. In
particular the effect of neglecting the integration around the branch cut, in interpretation
of eq. (43) was not rigorously justified. Further, since the growth rate depends on the
direction of k 1, the quantity G may be large over a small range of angles. The question of
how small that angle must be to avoid substantial degradation of the beam is not answered
in the present work. Also, let me reemphasize that the borders between regimes in figures
3, 5, and 6 have been artificially smoothed. In conclusion, one should regard the growth
rates obtained in this memo as indicative, and helpful in understanding the scaling of the
instability and as a basis for understé_.nding some of the complexities of the more exact
numerical simulations. ' o ' _ . S
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Figure | Captions

1. The complex s, plane for the integration of equation (23) in the large &, limit. ALl

- of the zeroes in eq. (41) lie along the dashed line. The branch of the logarithm in eq.

(41} is chosen such that -7 < 8 < 7, where 6 = arg(1 + 2=). The figure is drawn for
 8p ="|sy]; larger values of 8p/|sw| result in more poles.

2. Schematic representation of phase compensated fine scale thermal blooming gain in
the k—7 plane. Asymptotic regimes and the respective gains for each region are shown.
Dashed lines indicate contours of constant gain G .where I;(2)/I;(0) ~ exp(G). The

- three contours shown are for G = 1,73, and 10. Double dashed lines schematically
- indicate closely spaced contours due to the decay of the perturbations. The distortion
mumber, Np =TIjkhAt, is held constant. The normalized variables are - o

k= (R{2kY 2Ly, r=(2k/R)/?c,t, z= (2k/R)2x/c,, and A 1=27/ky.

For this figure the following parameters have been assnmed: N p = 1000,h = 5 x
10% em, k£ =6.3 x 10* cm™!, y = .22 cm? sTlLd=n/2, c,=3 % 104 cmm s~1.

3. Surface plot of smoothed logarithmic gain. The approximate gain using the same
parameters as in fig 2. In order to artificially smooth the sharp boundaries between
regimes, the growth rate plotted is the inverse of the sum of inverse growth rates plus
the decay rates. : '

4. Same as figure 2, except that ¢ = 0, and |[du/dz| = v, /h, with v, = 450 cm s—1,

Same as figure 3, except that ¢ = 0, and |du/dz| = v, /h, with v, = 450 cm s~1.

6. Surface plot of smoothed logarithmic gain as a function of ¢ (the angle between the
wind shear direction and k, ) and log . Here the parameters are the same as figure
2, except that Np = 150, and |dy/dz| = v,/h, with v, = 450 cm s,

o
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